Меню

Пассивные ик-извещатели движения. Пассивный инфракрасный датчик движения Линейные инфракрасные извещатели

Пол

ИК-датчик движения

Одно из новшеств вошедших в нашу жизнь, область его применения широка, поэтому он перестал быть «диковинкой» и начал применяться повсеместно. Естественно, люди интересуются этим прибором. Удалось найти публикацию автора, который очень подробно осветил эту тему, как говорится, не добавит, не убавить.

Представляю вашему вниманию статью из журнала «Радiоаматор» автор Н.П. Власюк , г. Киев.

Пассивный инфракрасный датчик движения

Пассивный инфракрасный датчик движения с питанием от ~220 В выпускается в комплекте с галогеновым прожектором и сконструирован как единое устройство. Пассивным называется потому, что он не подсвечивает контролируемую зону инфракрасным излучением, а использует его фоновое инфракрасное излучение, поэтому является абсолютно безвредным.

Назначение ИК-датчика и практическое применение

Датчик предназначен для автоматического включения нагрузки, например прожектора, при попадании в зону его контроля движущегося объекта и выключении его после выхода объекта из зоны. Он применяется для освещения фасадов домов, хозяйственных дворов, строительных площадок и т.д.

Технически данные пассивного ИК-датчика модели 1VY7015

Напряжение питания датчика и всего устройства ~220 В, ток потребления самого датчика в режиме охраны 0,021 А, что соответствует потребляемой мощности 4,62 Вт. Естественно, при включении галогеновой лампы мощностью 150 или 500 Вт потребляемая мощность увеличивается соответственно. Максимальный радиус обнаружения движущегося объекта (впереди датчика) 12 м, зона чувствительности в горизонтальной плоскости 120…180 0 , регулируемая задержка освещения (после выхода объекта из зоны контроля) от 5… 10 с до 10… 15 мин. Допустимый температурный диапазон эксплуатации -10…+40°С. Допустимая влажность до 93%.

ИК-датчик может находиться в одном из следующих режимов. «Режим охраны», при котором он «зорко» следит за контролируемой зоной и готов в любое время включить исполнительное реле (нагрузку). «Режим тревоги», при котором датчик с помощью исполнительного реле включил нагрузку, так как в его контролируемою зону попал движущийся объект. «Спящий режим», при котором датчик, находясь во включенном состоянии (под током), в дневное время, не реагирует на внешние раздражители, а с наступлением сумерек (темноты) автоматически переходит в «Режим охраны». Этот режим предусмотрен для того, чтобы не включать освещение в дневное время. После подачи питания датчик начинает с «Режима тревоги», а потом переходит в «Режим охраны».

Подобные датчики продаются также и отдельно. Их применяют значительно шире, чем комплект (прожектор с датчиком), а по режиму электропитания они могут быть рассчитаны на напряжение ~220 В или =12 В.

Принцип работы пассивного ИК-датчика

Фоновое инфракрасное излучение контролируемой зоны с помощью переднего стекла (линзы) фокусируется на фототранзисторе, чувствительном к ИК-лучам. Поступающее от него малое напряжение усиливается с помощью операционных усилителей (ОУ) микросхемы, входящей в схему датчика. В нормальных условиях электромеханическое реле включения нагрузки обесточено. Как только в контролируемой зоне появляется движущийся объект, освещенность фототранзистора изменяется, он выдает на вход ОУ измененное напряжение. Усиленный сигнал выводит схему из равновесия, срабатывает реле, которое включает нагрузку, например лампу освещения. Как только объект выходит из зоны, лампа некоторое время продолжает светиться, в зависимости от выставленного времени электронного реле времени, а затем переходит в исходное состояние - «Режим охраны».

Принципиальная схема пассивного ИК-датчика модели 1VY7015 показана на рис.1.

По сравнению с подобными 1 2-вольтовыми ИК-датчиками, схема этой модели является простой. Нарисована она по монтажной схеме. Так как на монтажной схеме производители не обозначили все радиоэлементы, то автору пришлось это сделать самостоятельно. На плате размерами 80×68 мм размещены навесные радиоэлементы без применения ЧИП-элементов.

Назначение основных радиоэлементов принципиальной схемы

1. Узел питания датчика - бестрансформаторный, выполнен с применением гасящего конденсатора С2 емкостью 0,33 мкФ×400 В. После выпрямительного моста стабилитрон ZD (1 N4749) устанавливает напряжение 25 В, которое используется для питания обмотки реле К1, а стабилизатор DA1 (78L08) из 25 В стабилизирует 8 В, которое используется для питания микросхемы LM324 и вообще всей схемы. Конденсатор С4 - сглаживающий, а СЗ предохраняет датчик от высокочастотных помех.

2. Трехвыводной инфракрасный фототранзистор PIR D203C - «зоркий глаз» датчика, его главный элемент, именно он выдает «команду» на включение исполнительного реле при быстром изменении инфракрасного фона контролируемой зоны. Питается от +8 В через резистор R15. Конденсатор С13 - сглаживающий, а С12 предохраняет фототранзистор от высокочастотных помех.

3. Микросхема LM324N (рыночная стоимость $0,1) - главный усилитель датчика. В своем составе имеет 4 ОУ, которые схемой датчика (радиоэлементами R7, С6; D1, D2; R21, D3) включены последовательно (4-3-2-1), что обеспечивает высокое усиление сигнала, выдаваемого ИК- фототранзистором, и высокую чувствительность всего датчика. Питается от 8 В («плюс» - вывод 4, «минус» - вывод 11).

4. Назначение электромеханического реле К1 модели LS-T73 SHD-24VDC-F-A - включать нагрузку, а точнее, выдавать на нее ~220 В. Напряжение +25 В на обмотку реле выдает транзистор VT1. Номинальное рабочее напряжение обмотки реле 24 В, а его контакты, согласно надписи на корпусе, допускают ток 10 А при ~240 В, что вызывает сомнения в способности такого малогабаритного реле коммутировать нагрузку в 2400 Вт. Заграничные производители часто завышают параметры своих радиоэлементов.

5. Транзистор VT1 типа SS9014 или 2SC511. Основные предельные параметры: Uкэ.макс=45 В, lк.макс=0,1 А. Обеспечивает включение/выключение реле К1 в зависимости от соотношений напряжений (вывод 1 LM324N и коллектор VT2) на его базе.

6. Мост (R5, R6, R7, VR2, фоторезистор CDS) транзистор VT2 (SS9014, 2SC511) предназначены для установления одного из двух режимов работы датчика: «Режима охраны» или «Спящего режима». Необходимый режим обеспечивается освещенностью фоторезистора CDS (именно он своим сопротивлением, изменяющимся С» освещенности, указывает датчику, сейчас день или ночь положением движка переменного резистора VR2 (DAY LIGHT). Так, при нахождении движка переменного резистора в положении «День», датчик работает как днем, так и ночью, а в положении «Ночь» - только ночью, а днем находится в «спящем» режиме.

7. Регулируемое электронное реле времени (С14, R22 VR1) обеспечивает задержку времени отключения светящей лампы от 5… 10 с до 10… 15 мин после выхода объекта из контролируемой зоны. Регулировка обеспечивается

переменным резистором TIME VR1.

8. Переменным резистором SENS VR3 регулируют чувствительность датчика путем изменения глубины отрицательной обратной связи в ОУ №3.

9. Демпферная цепочка R1C1 поглощает скачки напряжения, возникающие при включении/выключении галогеновой лампы.

10. Остальные радиоэлементы (например, R16-R20 R11, R12 и т.д.) обеспечивают нормальную работу ОУ микросхемы LM324N.

Приступая к ремонту ИК-датчика, следует помнить, все его радиоэлементы находятся под фазным напряжением, опасным для жизни. При ремонте подобных устройств их рекомендуют включать через разделительный трансформатор. Датчик работает надежно и в ремонт попадает редко, но если он поврежден, то ремонт начинают с внешнего осмотра его монтажной платы. Если при этом не обнаружено повреждений, то следует проверить выходные напряжения устройства питания (25 и 8В). Устройство питания, да и любой другой элемент схемы (микросхема, транзисторы, стабилизатор, конденсаторы, резисторы), могут выйти из строя из-за скачков напряжения в питающей сети или ударов молнии, а защита от них в схеме датчика, к сожалению, не предусмотрена. Тестером можно проверить исправность всех этих элементов, кроме микросхемы. Микросхему, при подозрении в ее неработоспособности, можно заменить. Слабым звеном в датчике могут оказаться контакты реле К1, так как они коммутируют значительные пусковые токи галогеновой лампы, их работоспособность проверяют тестером.

Настройка ИК-датчика заключается в правильной установке трех регулировочных резисторов, расположенных снизу датчика (рис.2 ).

Что же регулируют эти резисторы?

TIME - регулирует время задержки на выключение галогеновой лампы, после того как объект, вызвавший ее включение, вышел из контролируемой зоны. Диапазон регулировки от 5…10 с до 10…15 мин.

DAY LIGHT- устанавливает датчик в «Режим охраны» или «Спящий режим» в дневное время. С физической точки зрения положение движка переменного резистора разрешает или запрещает работать датчику при определенной освещенности. Регулируемый диапазон освещенности 30 лк. Так, если регулятор повернуть против часовой стрелки (установить на знак «полумесяц»), то датчик работает только в темное время суток, а днем «спит». Если повернуть его в крайнее положение против часовой стрелки (знак «маленькое солнышко»), то датчик работает как в дневное, так и в ночное время, т.е. круглые сутки. В промежуточном положении между этими значениями датчик может перейти в «Режим охраны» уже с наступлением сумерек. Переход датчика в один из вышеуказанных режимов происходит автоматически.

SENS - регулирует чувствительность датчика, т.е. устанавливает большую или меньшую площадь (или дальность) контролируемой зоны.

Недостатки ИК-датчика

Недостатки ИК-датчика ~220 В заключаются в его ложных срабатываниях. Это происходит при движении веток деревьев или кустов, находящихся в контролируемой зоне; от проезжающей машины, точнее, от тепла его двигателя; от изменяющегося источника тепла, если он расположен под датчиком; от внезапного изменения температуры при порывах ветра; от молнии и засветки автомобильных фар от прохода животных (собак, кошек); от мигания электросети датчик срабатывает и некоторое время лампа продолжает светить. К недостаткам вышеописанного датчика следует отнести и его нерабочее состояние при отсутствии напряжения ~220 В. Уменшить количество ложных срабатываний можно путем изменения положения датчика.

Назначения переднего стекла - линзы ИК - датчика. Для расширения контролируемой зоны до Control 120° и даже 180° линзу датчика делают полукруглой или сферической. При ее изготовлении (литье) с ее внутренней стороны предусмотрены многочисленные прямоугольные линзочки. Они делят контролируемый сектор на маленькие участки. Каждая линзочка, из своего участка, фокусирует инфракрасное излучение в центр фототранзистора. Деление контролируемой зоны на участки приводит к тому, что контролируемая зона становится веерной (рис.3 ).

В результате датчик «видит» нарушителя только в черной зоне, а в белой он «слепой». Эти зоны, в зависимости от количества и размеров линзочек, имеют заданную конструкторами конфигурацию. Применение микропроцессоров позволяет устранить ряд вышеописанных недостатков этих датчиков. Линза - это важнейший элемент ИК-датчика. Именно от ее зависит, как широко по горизонтали и вертикали «видит» датчик. Некоторые ИК-датчики имеют сменные линзы, которые создают контролируемую зону под конкретную задачу. Стекло линзы должно быть целым (не разбитым), в противном случае конфигурация его контролируемой зоны непредсказуема.

1 .Освещение различных помещений, т.е. автоматическое включение/выключение освещения в подъездах, складах, квартирах (домах), хозяйственных дворах и фермах. Для этого, в зависимости от ситуации, можно применить как вышеописанные комплекты ИК- датчиков с прожекторами, так и отдельно продаваемые датчики. Устанавливают комплект на неподвижных объектах на высоте 2,5…4,5 м (рис.4 ).


Отдельно продаваемые пассивные ИК-датчики могут быть рассчитаны на напряжение электропитания либо ~220 В, либо +12 В. Для освещения лучше использовать датчики на ~220 В, они сравнительно дешевые и выдают на нагрузку также ~220 В, поэтому к ним легко подключать электролампочки.

Один из вариантов такого датчика, модель УСА 1009, показан на рис.6 .

В нем только два регулировочных резистора: Time Delay, регулирующий время отключения нагрузки после выхода объекта из контролируемой зоны, и Light Control, разрешающий или запрещающий работу датчика в дневное время. Максимально допустимая нагрузка 1200 Вт. Угол обзора контролируемой зоны 180°, а ее максимальная длина 12 м.

Из датчика выходят три цветных провода, предназначенных для подключения сети и нагрузки. На рис.7

показана схема включения такого датчика на отдельную лампу ~220 В, в качестве которой можно использовать и настольную лампу.

При подключении датчика к существующей электропроводке дома (квартиры), т.е. к уже установленным лампочкам и выключателям важно правильно найти общий провод датчика и совместить его с электропроводкой. На рис.8, а, б показаны схемы участка электропроводки до включения датчика и после включения.

Если использовать датчик для освещения крыльца дома, то сам датчик лучше установить около лампочки.

Применение ИК-датчиков в схемах освещения значительно экономит электроэнергию и создает удобства при их автоматическом включении/выключении.

2. Автоматическое включение освещения в квартирах и домах. В такой ситуации датчик лучше приспособить к настольной лампе, чтобы при ненадобности можно было легко отключить.

3. Оповещение владельца дома о приходе гостей. В этом случае, датчик необходимо направить на калитку забора или пространство около нее, а для звукового оповещения использовать звонок или иной звуковой извещатель с питанием от ~220 В.

4. Охрана хозяйственного двора, гаража, фермы, офиса, квартиры. Для этой цели можно применить и вышеописанные дешевые ИК-датчики с питанием от ~220 В. Однако такие датчики имеют большой недостаток: при пропадании сети они не работают, поэтому их применяют только для охраны малозначимых объектов. ИК-датчики с питанием от +12 В лишены этих недостатков, так как они легко обеспечиваются резервным электропитанием от аккумуляторов. Для этого разработан небольшой приемно - контрольный прибор (ПКП), который крепится на стенку. В нем размещаются блок питания, аккумуляторы 12 В на 4 Ач или 7 Ач и электронная начинка. Все датчики охраняемого объекта подключают к одному ПКП, который обеспечивает их надежным электропитанием, принимает от них сигналы тревоги и передает охране. При отсутствии охраны к ПКП можно подключить мощную звуковую сирену, которая отпугнет злоумышленников. Таким образом, для охраны важных объектов должны применяться комплекты ПКП с ИК- датчиками 12 В, между ними протягивают стандартный 4- проводный кабель (два провода для питания 12 В, два - для сигнала тревоги). На ИК-датчиках +12 В не устанавливают внешние регулировочные резисторы, так как часть их функций передано «электронной начинке» прибора ПКП.

Для охраны своего хозяйственного двора ИК-датчики необходимо устанавливать так, чтобы они не были заметны, иначе их могут вывести из строя. Для этого ИК-датчики можно установить у окон внутри дома, направив их линзу на охраняемые объекты. Для охраны квартир и офисов ИК- датчики устанавливают в углу комнат, а для охраны гаражей и ферм их линзы направляют на входные ворота.

Как уже отмечалось, дешевые ИК-датчики на ~220 В и 12 В имеют ряд недостатков, таких, как срабатывания датчика при проходе собак, кошек, мышей. Для устранения этого явления необходимо установить ИК-датчик внутри дома на подоконнике окна, направить его во двор и расположить перед ним защитный экран (рис.9 ).

В этом случае между землей и зоной захвата ИК-датчика образуется «слепая зона», в которой датчик не реагирует на мелких нарушителей, но на проходящего человека он среагирует, так как по высоте человек выше этой зоны.

В новых датчиках 12 В конструкторы, усложнив схему и конструкцию датчика, устранили этот недостаток. Так, в израильском ИК-датчике Crow SRX-1100 добавлен микропроцессор и установлен СВЧ радиоизлучатель, который определяет размеры нарушителя, сравнивает его с установленными порогами и принимает решение, дать или не дать команду на сигнал тревоги.

Конструкторы из Японии и других стран решили данную проблему другим способом. Они предусмотрели смещение (внутри ИК-датчика) электронной платы с фототранзистором вверх или вниз по отношению к точке фокусировки линзочек стекла. В результате самые ближние к земле черные чувствительные сегменты отсекаются, и у земли устанавливается «слепая зона», в которой датчик «не видит» мелких животных. Высоту «слепой зоны» можно регулировать тем же смещением электронной платы. Есть и другие способы исключения реагирования ИК-датчиков на проход мелких животных. Решена проблема срабатывания ИК-датчика при его засветке молнией или фарами автомашин. Естественно, все эти усовершенствования вызывают удорожание пассивных ИК-датчиков, зато повышают надежность охраны.

В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.

Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал “тревога” на средства оповещения. В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.

Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Инфракрасное излучение - это тепло, которое излучается всеми нагретыми телами. В пассивных оптико-электронных ИК-извещателях инфракрасное излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы (рис. 1).

Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1)1.

Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:

    . нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
    . движение нарушителя должно происходить в определенном интервале скоростей;
    . чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).

ИК-пассивные датчики состоят из трех основных элементов:

    . оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
    . пироприемника, регистрирующего тепловое излучение человека;
    . блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.

В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной. Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2.

Оптическая система

Современные ИК-датчики характеризуются большим разнообразием возможных форм диаграмм направленности. Зона чувствительности ИК-датчиков представляет собой набор лучей различной конфигурации, расходящихся от датчика по радиальным направлениям в одной или нескольких плоскостях. В связи с тем, что в ИК-детекторах используются сдвоенные пироприемники, каждый луч в горизонтальной плоскости расщепляется на два:

Зона чувствительности детектора может иметь вид:

    . одного или нескольких, сосредоточенных в малом угле, узких лучей;
    . нескольких узких лучей в вертикальной плоскости (лучевой барьер);
    . одного широкого в вертикальной плоскости луча (сплошной занавес) или в виде многовеерного занавеса;
    . нескольких узких лучей в горизонтальной или наклонной плоскости (поверхностная одноярусная зона);
    . нескольких узких лучей в нескольких наклонных плоскостях (объемная многоярусная зона).
    . При этом возможно изменение в широком диапазоне протяженности зоны чувствительности (от 1 м до 50 м), угла обзора (от 30° до 180°, для потолочных датчиков 360°), угла наклона каждого луча (от 0° до 90°), количества лучей (от 1 до нескольких десятков).

Многообразие и сложная конфигурация форм зоны чувствительности обусловлены в первую очередь следующими факторами:

    . стремлением разработчиков обеспечить универсальность при оборудовании различных по конфигурации помещений - небольшие комнаты, длинные коридоры, формирование зоны чувствительности специальной формы, например с зоной нечувствительности (аллеей) для домашних животных вблизи пола и т.п.;
    . необходимостью обеспечения равномерной по охраняемому объему чувствительности ИК детектора.

На требовании равномерной чувствительности целесообразно остановиться подробнее. Сигнал на выходе пироприемника при прочих равных условиях тем больше, чем больше степень перекрытия нарушителем зоны чувствительности детектора и чем меньше ширина луча и расстояние до детектора. Для обнаружения нарушителя на большом (10…20 м) расстоянии желательно, чтобы в вертикальной плоскости ширина луча не превышала 5°…10°, в этом случае человек практически полностью перекрывает луч, что обеспечивает максимальную чувствительность. На меньших расстояниях чувствительность детектора в этом луче существенно возрастает, что может привести к ложным срабатываниям, например, от мелких животных. Для уменьшения неравномерной чувствительности используются оптические системы, формирующие несколько наклонных лучей, ИК детектор при этом устанавливается на высоте выше человеческого роста. Общая длина зоны чувствительности тем самым разделяется на несколько зон, причем “ближние” к детектору лучи для снижения чувствительности делаются обычно более широкими. За счет этого обеспечивается практически постоянная чувствительность по расстоянию, что с одной стороны способствует уменьшению ложных срабатываний, а с другой стороны повышает обнаружительную способность за счет устранения мертвых зон вблизи детектора.

При построении оптических систем ИК-датчиков могут использоваться:

    . линзы Френеля - фасеточные (сегментированные) линзы, представляющие собой пластиковую пластину с отштампованными на ней несколькими призматическими линзами-сегментами;
    . зеркальная оптика - в датчике устанавливается несколько зеркал специальной формы, фокусирующих тепловое излучение на пироприемник;
    . комбинированная оптика, использующая и зеркала, и линзы Френеля.
    . В большинстве ИК-пассивных датчиков используются линзы Френеля. К достоинствам линз Френеля относятся:
    . простота конструкции детектора на их основе;
    . низкая цена;
    . возможность использования одного датчика в различных приложениях при использовании сменных линз.

Обычно каждый сегмент линзы Френеля формирует свой луч диаграммы направленности. Использование современных технологий изготовления линз позволяет обеспечить практически постоянную чувствительность детектора по всем лучам за счет подбора и оптимизации параметров каждой линзы-сегмента: площади сегмента, угла наклона и расстояния до пироприемника, прозрачности, отражающей способности, степени дефокусировки. В последнее время освоена технология изготовления линз Френеля со сложной точной геометрией, что дает 30% увеличение собираемой энергии по сравнению со стандартными линзами и соответственно увеличение уровня полезного сигнала от человека на больших расстояниях. Материал, из которого изготавливаются современные линзы, обеспечивает защиту пироприемника от белого света. К неудовлетворительной работе ИК-датчика могут привести такие эффекты, как тепловые потоки, являющиеся результатом нагревания электрических компонентов датчика, попадание насекомых на чувствительные пироприемники, возможные переотражения инфракрасного излучения от внутренних частей детектора. Для устранения этих эффектов в ИК-датчиках последнего поколения применяется специальная герметичная камера между линзой и пироприемником (герметичная оптика), например в новых ИК-датчиках фирм PYRONIX и C&K. По оценкам специалистов, современные высокотехнологичные линзы Френеля по своим оптическим характеристикам практически не уступают зеркальной оптике.

Зеркальная оптика как единственный элемент оптической системы применяется достаточно редко. ИК-датчики с зеркальной оптикой выпускаются, например, фирмами SENTROL и ARITECH. Преимуществами зеркальной оптики являются возможность более точной фокусировки и, как следствие, увеличение чувствительности, что позволяет обнаруживать нарушителя на больших расстояниях. Использование нескольких зеркал специальной формы, в том числе многосегментных, позволяет обеспечить практически постоянную чувствительность по расстоянию, причем эта чувствительность на дальних расстояниях приблизительно на 60% выше, чем для простых линз Френеля. С помощью зеркальной оптики проще обеспечивается защита ближней зоны, расположенной непосредственно под местом установки датчика (так называемая антисаботажная зона). По аналогии со сменными линзами Френеля, ИК-датчики с зеркальной оптикой комплектуются сменными отстегивающимися зеркальными масками, применение которых позволяет выбирать требуемую форму зоны чувствительности и дает возможность адаптировать датчик к различным конфигурациям защищаемого помещения.

В современных высококачественных ИК-детекторах используется комбинация линз Френеля и зеркальной оптики. При этом линзы Френеля используются для формирования зоны чувствительности на средних расстояниях, а зеркальная оптика - для формирования антисаботажной зоны под датчиком и для обеспечения очень большого расстояния обнаружения.

Пироприемник:

Оптическая система фокусирует ИК излучение на пироприемнике, в качестве которого в ИК-датчиках используется сверхчувствительный полупроводниковый пироэлектрический преобразователь, способный зарегистрировать разницу в несколько десятых градуса между температурой тела человека и фона. Изменение температуры преобразуется в электрический сигнал, который после соответствующей обработки вызывает сигнал тревоги. В ИК-датчиках обычно используются сдвоенные (дифференциальные, DUAL) пироэлементы. Это связано с тем, что одиночный пироэлемент одинаковым образом реагирует на любое изменение температуры независимо от того, чем оно вызвано - человеческим телом или, например, обогревом помещения, что приводит к повышению частоты ложных срабатываний. В дифференциальной схеме производится вычитание сигнала одного пироэлемента из другого, что позволяет существенно подавить помехи, связанные с изменением температуры фона, а также заметно снизить влияние световых и электромагнитных помех. Сигнал от движущегося человека возникает на выходе сдвоенного пироэлемента только при пересечении человеком луча зоны чувствительности и представляет собой почти симметричный двухполярный сигнал, близкий по форме к периоду синусоиды. Сам луч для сдвоенного пироэлемента по этой причине расщепляется в горизонтальной плоскости на два. В последних моделях ИК-датчиков с целью дополнительного снижения частоты ложных срабатываний используются счетверенные пироэлементы (QUAD или DOUBLE DUAL) - это два сдвоенных пироприемника, расположенные в одном датчике (обычно размещаются один над другим). Радиусы наблюдения этих пироприемников делаются различными, и поэтому локальный тепловой источник ложных срабатываний не будет наблюдаться в обоих пироприемниках одновременно. При этом геометрия размещения пироприемников и схема их включения выбирается таким образом, чтобы сигналы от человека были противоположной полярности, а электромагнитные помехи вызывали сигналы в двух каналах одинаковой полярности, что приводит к подавлению и этого типа помех. Для счетверенных пироэлементов каждый луч расщепляется на четыре (см. рис.2), в связи с чем максимальное расстояние обнаружения при использовании одинаковой оптики уменьшается приблизительно вдвое, так как для надежного обнаружения человек должен своим ростом перекрывать оба луча от двух пироприемников. Повысить расстояние обнаружения для счетверенных пироэлементов позволяет использование прецизионной оптики, формирующей более узкий луч. Другой путь, позволяющий в некоторой степени исправить это положение - применение пироэлементов со сложной переплетенной геометрией, что использует в своих датчиках фирма PARADOX.

Блок обработки сигналов

Блок обработки сигналов пироприемника должен обеспечивать надежное распознавание полезного сигнала от движущегося человека на фоне помех. Для ИК-датчиков основными видами и источниками помех, могущими вызвать ложное срабатывание, являются:

    . источники тепла, климатизационные и холодильные установки;
    . конвенционное движение воздуха;
    . солнечная радиация и искусственные источники света;
    . электромагнитные и радиопомехи (транспорт с электродвигателями, электросварка, линии электропередачи, мощные радиопередатчики, электростатические разряды);
    . сотрясения и вибрации;
    . термическое напряжение линз;
    . насекомые и мелкие животные.

Выделение блоком обработки полезного сигнала на фоне помех основано на анализе параметров сигнала на выходе пироприемника. Такими параметрами являются величина сигнала, его форма и длительность. Сигнал от человека, пересекающего луч зоны чувствительности ИК-датчика, представляет собой почти симметричный двухполярный сигнал, длительность которого зависит от скорости перемещения нарушителя, расстояния до датчика, ширины луча, и может составлять приблизительно 0,02…10 с при регистрируемом диапазоне скоростей перемещения 0,1…7 м/с. Помеховые сигналы в большинстве своем являются несимметричными или имеющими отличную от полезных сигналов длительность (см. рис. 3). Изображенные на рисунке сигналы носят очень приблизительный характер, в реальности все значительно сложнее.

Основным параметром, анализируемым всеми датчиками, является величина сигнала. В простейших датчиках этот регистрируемый параметр является единственным, и его анализ производится путем сравнения сигнала с некоторым порогом, который определяет чувствительность датчика и влияет на частоту ложных тревог. С целью повышения устойчивости к ложным тревогам в простых датчиках используется метод счета импульсов, когда подсчитывается, сколько раз сигнал превысил порог (то есть, по сути, сколько раз нарушитель пересек луч или сколько лучей он пересек). При этом тревога выдается не при первом превышении порога, а только если в течение определенного времени количество превышений становится больше заданной величины (обычно 2…4). Недостатком метода счета импульсов является ухудшение чувствительности, особенное заметное для датчиков с зоной чувствительности типа одиночного занавеса и ей подобной, когда нарушитель может пересечь только один луч. С другой стороны, при счете импульсов возможны ложные срабатывания от повторяющихся помех (например, электромагнитных или вибраций).

В более сложных датчиках блок обработки анализирует двухполярность и симметрию формы сигналов с выхода дифференциального пироприемника. Конкретная реализация такой обработки и используемая для ее обозначения терминология1 у разных фирм-производителей может быть различной. Суть обработки состоит в сравнении сигнала с двумя порогами (положительным и отрицательным) и, в ряде случаев, сравнении величины и длительности сигналов разной полярности. Возможна также комбинация этого метода с раздельным подсчетом превышений положительного и отрицательного порогов.

Анализ длительности сигналов может проводиться как прямым методом измерения времени, в течение которого сигнал превышает некоторый порог, так и в частотной области путем фильтрации сигнала с выхода пироприемника, в том числе с использованием “плавающего” порога, зависящего от диапазона частотного анализа.

Еще одним видом обработки, предназначенным для улучшения характеристик ИК-датчиков, является автоматическая термокомпенсация. В диапазоне температур окружающей среды 25°С…35°С чувствительность пироприемника снижается за счет уменьшения теплового контраста между телом человека и фоном, при дальнейшем повышении температуры чувствительность снова повышается, но “с противоположным знаком”. В так называемых “обычных” схемах термокомпенсации осуществляется измерение температуры, и при ее повышении производится автоматическое увеличение усиления. При “настоящей” или “двухсторонней” компенсации учитывается повышение теплового контраста для температур выше 25°С…35°С. Использование автоматической термокомпенсации обеспечивает почти постоянную чувствительность ИК-датчика в широком диапазоне температур.

Перечисленные виды обработки могут проводиться аналоговыми, цифровыми или комбинированными средствами. В современных ИК-датчиках все шире начинают использоваться методы цифровой обработки с использованием специализированных микроконтроллеров с АЦП и сигнальных процессоров, что позволяет проводить детальную обработку тонкой структуры сигнала для лучшего выделения его на фоне помех. В последнее время появились сообщения о разработке полностью цифровых ИК-датчиков, вообще не использующих аналоговых элементов.
Как известно, вследствие случайного характера полезных и помеховых сигналов наилучшими являются алгоритмы обработки, основанные на теории статистических решений.

Другие элементы защиты ИК-извещателей

В ИК-датчиках, предназначенных для профессионального использования, применяются так называемые схемы антимаскинга. Суть проблемы состоит в том, что обычные ИК-датчик могут быть выведены нарушителем из строя путем предварительного (когда система не поставлена на охрану) заклеивания или закрашивания входного окна датчика. Для борьбы с этим способом обхода ИК-датчиков и используются схемы антимаскинга. Метод основывается на использовании специального канала ИК-излучения, срабатывающего при появлении маски или отражающей преграды на небольшом расстоянии от датчика (от 3 до 30 см). Схема антимаскинга работает непрерывно, пока система снята с охраны. Когда факт маскирования обнаруживается специальным детектором, сигнал об этом подается с датчика на контрольную панель, которая, однако, не выдает сигнала тревоги до тех пор, пока не придет время постановки системы на охрану. Именно в этот момент оператору и будет выдана информация о маскировании. Причем, если это маскирование было случайным (крупное насекомое, появление крупного объекта на некоторое время вблизи датчика и т.п.) и к моменту постановки на сигнализацию самоустранилось, сигнал тревоги не выдается.

Еще одним защитным элементом, которым оборудованы практически все современные ИК-детекторы, является контактный датчик вскрытия, сигнализирующий о попытке открывания или взлома корпуса датчика. Реле датчиков вскрытия и маскирования подключаются к отдельному шлейфу охраны.

Для устранения срабатываний ИК-датчика от мелких животных используются либо специальные линзы с зоной нечувствительности (Pet Alley) от уровня пола до высоты порядка 1 м, либо специальные методы обработки сигналов. Следует учитывать, что специальная обработка сигналов позволяет игнорировать животных только в том случае, если их общий вес не превышает 7…15 кг, и они могут приблизиться к датчику не ближе 2 м. Так что если в охраняемом помещении прыгучая кошка, то такая защита не поможет.

Для защиты от электромагнитных и радиопомех используется плотный поверхностный монтаж и металлическое экранирование.

Монтаж извещателей

Пассивные оптико-электронные ИК-извещатели имеют одно замечательное преимущество по сравнению с другими типами средств обнаружения. Это простота монтажа, настройки и технического обслуживания. Извещатели данного типа могут устанавливаться как на плоской поверхности несущей стены, так и в углу помещения. Существуют извещатели, которые размещаются на потолке.

Грамотный выбор и тактически верное применение таких извещателей являются залогом надежной работы устройства, да и всей системы охраны в целом!

При выборе типов и количества датчиков для обеспечения охраны конкретного объекта следует учитывать возможные пути и способы проникновения нарушителя, требуемый уровень надежности обнаружения; расходы на приобретение, монтаж и эксплуатацию датчиков; особенности объекта; тактико-технические характеристики датчиков. Особенностью ИК-пассивных датчиков является их универсальность - с их использованием возможно блокирование от подхода и проникновения самых разнообразных помещений, конструкций и предметов: окон, витрин, прилавков, дверей, стен, перекрытий, перегородок, сейфов и отдельных предметов, коридоров, объемов помещений. При этом в ряде случаев не потребуется большого количества датчиков для защиты каждой конструкции - может оказаться достаточным применения одного или нескольких датчиков с нужной конфигурацией зоны чувствительности. Остановимся на рассмотрении некоторых особенностей применения ИК-датчиков.

Общий принцип использования ИК-датчиков - лучи зоны чувствительности должны быть перпендикулярны предполагаемому направлению движения нарушителя. Место установки датчика следует выбирать так, чтобы минимизировать мертвые зоны, вызванные наличием в охраняемом помещении крупных предметов, перекрывающих лучи (например, мебель, комнатные растения). Если в помещении двери открываются внутрь, следует учитывать возможность маскировки нарушителя открытыми дверьми. При невозможности устранить мертвые зоны следует использовать несколько датчиков. При блокировке отдельных предметов датчик или датчики нужно устанавливать так, чтобы лучи зоны чувствительности блокировали все возможные подходы к защищаемым предметам.

Должен соблюдаться задаваемый в документации диапазон допустимых высот подвески (минимальная и максимальная высоты). В особенности это относится к диаграммам направленности с наклонными лучами: если высота подвески будет превышать максимально допустимую, то это приведет к уменьшению сигнала из дальней зоны и увеличению мертвой зоны перед датчиком, если же высота подвески будет меньше минимально допустимой, то это приведет к уменьшению дальности обнаружения с одновременным уменьшением мертвой зоны под датчиком.

1. Извещатели с объемной зоной обнаружения (рис. 3, а,б), как правило, устанавливаются в углу помещения на высоте 2,2-2,5 м. В этом случае они равномерно охватывают объем защищаемого помещения.

2. Размещение извещателей на потолке предпочтительнее в помещениях с высокими потолками от 2,4 до 3,6 м. Данные извещатели имеют более плотную зону обнаружения (рис. 3, в), а на их работу в меньшей степени влияют имеющиеся предметы мебели.

3. Извещатели с поверхностной зоной обнаружения (рис. 4) применяются для охраны периметра, например некапитальных стен, дверных или оконных проемов, а также могут использоваться для ограничения подхода к каким-либо ценностям. Зона обнаружения таких устройств должна быть направлена, как вариант, вдоль стены с проемами. Некоторые извещатели могут устанавливаться непосредственно над проемом.

4. Извещатели с линейной зоной обнаружения (рис. 5) применяются для охраны длинных и узких коридоров.

Помехи и ложные срабатывания

При использовании пассивных оптико-электронных ИК-извещателей необходимо иметь в виду возможность ложных срабатываний, которые происходят из-за помех различного типа.

К ложным срабатываниям ИК-датчиков могут привести помехи теплового, светового, электромагнитного, вибрационного характера. Несмотря на то, что современные ИК-датчики имеют высокую степень защиты от указанных воздействий, все же целесообразно придерживаться следующих рекомендаций:

    . для защиты от потоков воздуха и пыли не рекомендуется размещать датчик в непосредственной близости от источников воздушных потоков (вентиляция, открытое окно);
    . следует избегать прямого попадания на датчик солнечных лучей и яркого света; при выборе места установки должна учитывается возможность засветки в течение непродолжительного времени рано утром или на закате, когда солнце низко над горизонтом, или засветки фарами проезжающего снаружи транспорта;
    . на время постановки на охрану целесообразно отключать возможные источники мощных электромагнитных помех, в частности источники света не на основе ламп накаливания: люминесцентные, неоновые, ртутные, натриевые лампы;
    . для снижения влияния вибраций целесообразно устанавливать датчик на капитальных или несущих конструкциях;
    . не рекомендуется направлять датчик на источники тепла (радиатор, печь) и колеблющиеся предметы (растения, шторы), в сторону нахождения домашних животных.

Тепловые помехи - обусловлены нагреванием температурного фона при воздействии на него солнечного излучения, конвективных потоков воздуха от работы радиаторов систем отопления, кондиционеров, сквозняков.
Электромагнитные помехи - вызываются наводками от источников электро- и радиоизлучений на отдельные элементы электронной части извещателя.
Посторонние помехи - связаны с перемещением в зоне обнаружения извещателя мелких животных (собаки, кошки, птицы). Рассмотрим более детально все факторы, влияющие на нормальную работоспособность пассивных оптико-электронных ИК-извещателей.

Тепловые помехи

Это наиболее опасный фактор, который характеризуется изменением температурного фона окружающей среды. Воздействие солнечного излучения вызывает локальное повышение температуры отдельных участков стен помещения.

Конвективные помехи обусловлены воздействием перемещающихся потоков воздуха, например от сквозняков при открытой форточке, щелей в оконных проемах, а также при работе бытовых отопительных приборов - радиаторов и кондиционеров.

Электромагнитные помехи

Возникают при включении любых источников электро- и радиоизлучения, таких как измерительная и бытовая аппаратура, освещение, электродвигатели, радиопередающие устройства. Сильные помехи могут создаваться и от разрядов молний.

Посторонние помехи

Своеобразным источником помех в пассивных оптико-электронных ИК-извещателях могут являться мелкие насекомые, такие как тараканы, мухи, осы. В случае их перемещения непосредственно по линзе Френеля может возникнуть ложное срабатывание извещателя данного типа. Опасность представляют и так называемые домашние муравьи, которые могут попасть внутрь извещателя и ползать непосредственно по пироэлементу.

Ошибки монтажа

Особое место в некорректной или неправильной работе пассивных оптико-электронных ИК-извещателей занимают ошибки монтажа при выполнении работ по установке данных типов устройств. Обратим внимание на яркие примеры неправильного размещения ИК-извещателей, чтобы избежать подобного на практике.

На рис. 6 а; 7 а и 8 а отображена правильная, корректная установка извещателей. Устанавливать их нужно только так и никак иначе!

На рисунках 6 б, в; 7 б, в и 8 б, в представлены варианты неправильной установки пассивных оптико-электронных ИК-извещателей. При такой установке возможны пропуски реальных вторжений в охраняемые помещения без выдачи сигнала “Тревога”.

Не устанавливать пассивные оптико-электронные извещатели таким образом, чтобы на них попадали прямые или отраженные лучи солнечного света, а также свет фар проезжающих автотранспортных средств.
Не направлять зону обнаружения извещателя на нагревательные элементы систем отопления и кондиционирования помещения, на шторы и гардины, которые могут колебаться от сквозняков.
Не располагать пассивные оптико-электронные извещатели вблизи источников электромагнитного излучения.
Уплотнять все отверстия пассивного оптико-электронного ИК-извещателя герметиком из комплекта изделия.
Уничтожать насекомых, которые присутствуют в охраняемом помещении.

В настоящее время имеется огромное разнообразие средств обнаружения, отличающихся принципом действия, областью применения, конструкцией и эксплуатационными характеристиками.

Правильный выбор пассивного оптико-электронного ИК-извещателя и места его установки - залог надежной работы системы охранной сигнализации.

При написании статьи использованы в том числе материалы из журнала “Системы безопасности” №4, 2013

1.3.1. Пассивные оптико-электронные инфракрасные (ИК) датчики движения

Для создания системы я решил подобрать модули, которые бы подходили для создания системы и осуществляли слежение за периметром.


Я выбрал следующие компоненты:
  • пассивный инфракрасный датчик движения;
  • GSM модуль;
  • сирена.

Рассмотрим их поподробней.

В 21-м веке все знакомы с ИК-датчиками – они открывают двери в аэропортах и магазинах когда вы подходите к двери. Они же обнаруживают движение и подают сигнал тревоги в охранной сигнализации.

В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.

Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения или PIR датчиками ) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал «тревога » на средства оповещения.

В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.


Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Сенсор , чувствительный к инфракрасному излучению в диапазоне 5–15 мкм, обнаруживает тепловое излучение от человеческого тела. Именно в этот диапазон попадает максимум излучения от тел при температуре 20–40 градусов Цельсия.

Чем сильнее нагрет предмет, тем больше он излучает.
инфракрасные прожекторы подсветки видеокамер, лучевые (двухпозиционные) детекторы «пересечения луча » и пульты управления телевизором работают в диапазоне длин волн короче 1 мкм, видимая человеком область спектра находится в районе 0,45–0,65 мкм.

Пассивными датчики такого типа называются, потому что сами они ничего не излучают, только воспринимают тепловое излучение от человеческого тела.

Проблема состоит в том, что любой предмет при температуре даже 0º С излучает довольно много в ИК-диапазоне. Хуже того, излучает сам детектор – его корпус и даже материал чувствительного элемента.

Поэтому первые такие детекторы работали, если только сам детектор охладить, скажем, до жидкого азота (-196º С). Такие детекторы весьма не практичны в повседневной жизни.

То есть важно, что излучение от человека фокусируется только на одну из площадок, и притом оно изменяется.

Наиболее надежно детектор срабатывает, если изображение человека попадет сначала на одну площадку, сигнал от нее станет больше, чем от второй, а затем человек передвинется, так что его изображение попадет теперь на вторую площадку и сигнал у второй вырастет, а у первой упадет.

Такие достаточно быстрые изменения разности сигналов вполне можно обнаружить даже на фоне огромного и непостоянного сигнала, вызванного всеми другими окружающими предметами (и особенно солнечным светом).

Рис. 1.


В пассивных оптико-электронных ИК-извещателях инфракрасное тепловое излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы.

Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1 ).

Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:

  • нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
  • движение нарушителя должно происходить в определенном интервале скоростей;
  • чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).
  • оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
  • пироприемника, регистрирующего тепловое излучение человека;
  • блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.

Рис. 2.

В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной.

Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2 .

Электронный датчик движения что такое? Ответ очевиден – чувствительный прибор, как правило, из класса устройств систем безопасности. Правда, есть также конструкции, предназначенные, к примеру, для управления источниками освещения и другими устройствами. Работа датчика движения строится по принципу генерации сигнала в случае обнаружения какого-либо движения в границах контролируемой зоны. Приборы делаются на базе разных технологий. Применение таких чувствительных сенсоров становится всё более востребованным и не только в хозяйственно-промышленной сфере, но также в сфере бытовой. Рассмотрим, какие выпускаются устройства, а также примеры использования.

Рассматриваемые в зависимости от способа обнаружения движения объекта. Существуют две классификации приборов:

  1. Активные.
  2. Пассивные.

Детекторы активного действия

Детекторы активного действия являются устройствами, функционирующими по принципу радарной схемы. Этот тип приборов излучает радиоволны (микроволны) в границах контролируемой зоны. Микроволны отражаются от существующих объектов и принимаются сенсором датчика движения.

Упрощённая схематика конструкции сенсора активного действия: 1 – источник (передатчик) микроволнового излучения; 2 – приёмник отражённого микроволнового сигнала; 3 – сканируемый объект

Если в зоне контроля обнаруживается движение в момент трансляции датчиком микро-излучения, создаётся эффект — доплеровский (частотный) сдвиг волны, который воспринимается вместе с отражённым сигналом.

Этот фактор сдвига указывает на то, что волна отразилась от движущегося объекта. Будучи электронным устройством, датчик сканирования движения способен вычислить такие изменения и отправить электрический сигнал:

  • в систему сигнализации,
  • на переключатель света,
  • на другие устройства,

схематично подключенные к датчику обнаружения движения.

Активные микроволновые датчики сканирования движения, в основном используются, к примеру, на автоматически работающих дверях торговых центров. Но вместе с тем этот тип приборов удачно подходит для домашних охранных систем или коммутации внутреннего освещения.

Этот вид электроники не подходит для коммутации наружного освещения или аналогичных применений. Обусловлено это массовостью активных объектов в условиях улицы, которые постоянно двигаются.

Например, движение ветвей деревьев от ветра, перемещение мелких животных, птиц и даже крупных насекомых, фиксируются активным сенсором, что приводит к ошибке срабатывания.

Детекторы пассивного действия (PIR – passive infrared)

Пассивные датчики движения – полная противоположность активным сенсорам. Пассивные системы ничего не посылают. инфракрасную энергию.


Конструктивное исполнение сенсора пассивного типа: 1 – Мульти объектив; 2 – Оптический фильтр; 3 – счетверённый инфракрасный элемент; 4 – металлический корпус; 5 – инфракрасное излучение; 6 – стабилизированный источник питания; 7 – усилитель; 8 — компаратор

Инфракрасные (тепловые) уровни энергии воспринимаются пассивными детекторами, непрерывно сканирующими область контроля или объект.

Учитывая, что инфракрасное тепло излучается не только от живых организмов, но также от любого объекта с температурой выше абсолютного нуля, можно сделать выводы о пригодности применения.

Эти датчики обнаружения движения не были бы эффективными, если бы их можно было активировать маленьким животным или насекомым, которое перемещается в диапазоне обнаружения.

Однако большинство существующих пассивных датчиков допустимо настроить на восприятие движение так, чтобы контролировать объекты с определенным уровнем испускаемого тепла. Например, прибор вполне можно настроить только на восприятие людей.

Сенсоры гибридной (комбинированной) конструкции

Комбинированный (гибридный) технологический датчик сканирования движения представляет собой систему комбинации активной и пассивной схемы. активирует действие только в случае обнаружения движения и той и другой схемой.

Комбинированные системы видятся полезными под применение в модулях сигнализации, так как уменьшают вероятность срабатывания на ложных тревогах.

Вместе с тем, эта технология обладает своими недостатками. Комбинированный прибор не в состоянии обеспечить такой же уровень безопасности, как отдельно взятые PIR и СВЧ-датчики.

Это очевидно, поскольку сигнал тревоги срабатывает только при обнаружении движения активным и пассивным датчиками одновременно.

Допустим, если злоумышленнику удастся каким-то способом предотвратить обнаружение одним из датчиков комбинированного прибора, движение останется незамеченным.

Соответственно, сигнал тревоги не будет отправлен на микропроцессор центральной системы сигнализации. На сегодня самым популярным типом комбинированных датчиков считается конструкция, где объединяются схемы PIR и микроволнового датчика.

Исполнение датчиков движения

Датчики сканирования на движение, разработанные и выпускаемые на текущий момент времени, обладают различными формами и габаритными размерами. Ниже приводятся несколько примеров исполнения устройств.

Пассивные инфракрасные конструкции (PIR) — пример

Одна из широко используемых конструкций, которые применяются в составе схем домашних системах безопасности.

Пассивные инфракрасные детекторы нацелены на отслеживание изменения уровня инфракрасной энергии, вызванного движением объектов (человека, домашних животных и т. п.).


Распространённая конструкция пассивного сенсора, которая отличается простейшей электронной схемой и не создаёт затруднений при подключении. Используются всего три электрических контакта

Сканеры пассивного действия изменчивостью источников тепла и солнечного света, поэтому PIR более подходит для обнаружения движения внутри помещений или в иной закрытой среде.

Активные инфракрасные датчики — пример

Активные инфракрасные детекторы используют структуру двунаправленной передачи. Одна сторона – передатчик, используется для испускания инфракрасного луча.

Другая сторона – приемник, используется для приема инфракрасного сигнала. Действие тревоги происходит при обнаружении прерывания луча, связывающего две точки.


Пример однолучевого активного детектора обнаружения подвижек. Между тем существуют конструкции более сложной конфигурации, благодаря которым есть возможность решать различные задачи

Активные датчики сканирования движения типа «Infra Red Beam» в основном устанавливаются снаружи (в условиях улицы).

Обнаружение происходит благодаря использованию теории передатчика и приемника. Важно, чтобы инфракрасный луч проходил через зону сканирования и доходил до приемника.

Ультразвуковой детектор — пример

Датчики сканирования движения с помощью ультразвука выпускаются конструкциями, способными работать как в активном, так и в пассивном режиме. Теоретически ультразвуковой детектор действует по принципу передачи-приёма.


Один из примеров конструкции на основе ультразвука. Универсальные системы, которыми поддерживается функциональность как в активном, так и в пассивном режимах

Посылаются высокочастотные звуковые волны, которые отражаются от предметов и воспринимаются сканирующим приёмным устройством прибора. Если последовательность звуковых волн прерывается, активный ультразвуковой датчик подаёт сигнал тревоги.

Применение датчиков обнаружения движения

Некоторые из ключевых применений детекторов, когда необходимо отслеживать движение:

  • аварийные сигналы вторжения
  • управление автоматическими воротами,
  • переключение освещения на входе,
  • аварийное освещение безопасности,
  • туалетные сушилки рук,
  • автоматическое открывание дверей и др.

Ультразвуковые датчики используются для управления камерой слежения жилой недвижимости или, например, для съемки живой природы.

Инфракрасные сенсоры применяются для подтверждения наличия продуктов на конвейерных лентах

Ниже приведён практический пример использования датчиков активного и пассивного обнаружения движения.

Контроллер уровня жидкости на ультразвуковых датчиках

На приведенной ниже схеме показано, как контроллер () управляет уровнем жидкости, используя ультразвуковой датчик.

Система работает, обеспечивая точные уровни жидкости в баке, управляя двигателем, определяя заданные пределы жидкости.


Практический пример реализации задачи на базе ультразвукового прибора и популярного набора Arduino, наглядно демонстрирующий ультразвуковой датчик движения что такое и как работает

Когда жидкость в резервуаре достигает нижнего и верхнего пределов, ультразвуковой датчик обнаруживает эти пределы и посылает сигналы на микроконтроллер.

Микроконтроллер запрограммирован таким образом, чтобы управлять реле, которым в свою очередь управляется двигатель насоса. За основу берутся сигналы предельных условий, заданных на ультразвуковом датчике движения.

Автоматическое открывание дверей на PIR

Как и в приведенной выше системе, автоматическая система открывания дверей с использованием датчика движения PIR. В этом случае обнаруживается присутствие людей и выполняется операция с дверьми (открытие или закрытие).


Другая схема, где задействован уже прибор пассивного действия. Здесь также используется популярный конструктор Arduino – инструмент удобный для экспериментов и построения реальных электронных систем

Детектором PIR обнаруживается присутствие людей, после чего отправляется сигнал обнаружения движения микроконтроллеру.

В зависимости от сигналов от датчика PIR, микроконтроллер управляет двигателем дверей в режимах прямого и обратного хода с помощью IC-драйвера.

Для целей охраны имущества используется большая номенклатура разнообразных технических средств, среди которых особое место занимают охранные извещатели.

Охранные извещатели - это своего рода «чувствительные рецепторы» системы охранной сигнализации, которые призваны обнаружить преступника в охраняемом помещении, сформировать сигнал тревоги и передать его в охранную систему для принятия мер реагирования.

От того, какие извещатели используются в системе охраны офиса или квартиры, напрямую зависит безопасность имущества клиента, а в отдельных случаях - безопасность его жизни и здоровья.

Действие извещателей основано на использовании различных физических принципов. Можно выделить 2 основных типа извещателей:

1. Пассивные извещатели, которые сами не являются источниками волн различной физической природы (электромагнитных, акустических, пр.).

2. Активные извещатели, являющиеся источниками таких волн.

Очевидные преимущества пассивных извещателей - это их экологическая чистота и низкое энергопотребление. Однако в ряде случаев, в частности для повышения достоверности формируемого извещателем сигнала тревоги и минимизации числа ложных срабатываний, используют извещатели второго типа. При этом в современных извещателях, как правило, активный и пассивный способ работы совмещаются в одном приборе.

По физическому принципу действия извещатели можно подразделить на следующие группы.

Инфракрасные - извещатели, которые обнаруживают тепловое (инфракрасное) излучение человеческого тела и формируют сигнал тревоги в случае, когда источник теплового излучения движется.

Ультразвуковые - извещатели, излучающие ультразвуковые колебания и принимающие сигнал, отраженный от окружающих предметов. Формирование тревожного сигнала происходит в случае возникновения движения в контролируемой зоне.

Радиоволновые - извещатели, излучающие в диапазоне ультракоротких радиоволн. Их принцип работы аналогичен принципу ультразвуковых извещателей.

Барометрические - извещатели, формирующие сигнал тревоги при скачкообразном падении атмосферного давления в охраняемом помещении, которое может произойти в случае открытия двери или окна.

Акустические - извещатели, формирующие сигнал тревоги при регистрации в охраняемой зоне характеристического звука. Чаще всего это звук разбития оконного стекла.

Сейсмические - извещатели, устанавливаемые на стену или другую конструкцию и формирующие сигнал тревоги в случае регистрации в этой конструкции характеристических колебаний, возникающих при попытке разрушения преграды известными способами и инструментами (отбойный молоток, абразивный инструмент, газовый резак, «кислородное копье», взрывчатка, т.п.).

Инерционные - извещатели, в которых сигнал тревоги формируется с использованием инерционных свойств предметов и как правило при механическом воздействии на охраняемый объект, например автомобиль (покачивание, толчки). К группе инерционных относятся вибрационные и ударноконтактные извещатели.

Пьезоэлектрические - различные извещатели, использующие в своей работе пьезоэлектрические материалы, которые обладают свойством наведения разности потенциалов на противоположных сторонах пьезоэлектрического кристалла при его деформации. К пьезоэлектрическим относятся контактные извещатели контроля разбития стекла, извещатели контроля неподвижности установленных (скульптура) или подвешенных (картины) предметов и т.д.

Магнитоконтактные - извещатели, формирующие сигнал тревоги при размыкании геркона вследствие удаления от него магнитного элемента.

Устанавливаются как правило на окна и входные двери.

Электроконтактные - извещатели, которые формируют сигнал тревоги при размыкании электрического контакта. В настоящее время используются как правило в системах тревожной сигнализации и работают в ручном режиме.

Комбинированные - извещатели, которые сочетают в себе два или более физических принципа действия (инфракрасный и ультразвуковой, инфракрасный и радиоволновой, акустический и магнитоконтактный и пр.). Использование двух физических принципов действия зачастую позволяет повысить помехозащищенность извещателя, исключить ложные срабатывания.

Ультразвуковые и радиоволновые извещатели относятся к активному, а все остальные - к пассивному типу извещателей.

Кроме указанных существуют извещатели, использующие иные физические принципы действия: емкостные, индуктивные, электромагнитные и пр.

К изложенному необходимо добавить, что инфракрасные и радиоволновые извещатели могут быть однопозиционными (для контроля движения в определенном объеме) и двухпозиционными (для контроля движения через ограждение). Двухпозиционные извещатели состоят из конструктивно обособленных передатчика и приемника электромагнитных волн и используются для охраны периметров; формирование тревожного сигнала в них происходит при пересечении человеком инфракрасного или радиолуча. В данном случае мы имеем дело с активным инфракрасным извещателем.

В настоящей статье будут рассмотрены принцип работы и конструктивные особенности пассивных инфракрасных извещателей, которые по праву пользуются большой популярностью у потребителей и являются наиболее распространенными.

Пассивные инфракрасные извещатели предназначены для обнаружения человека, находящегося в пределах зоны чувствительности. Основная задача извещателя - обнаружить инфракрасное излучение человеческого тела. Как видно из рисунка 1, тепловое излучение человеческого тела находится в пределах спектрального диапазона электромагнитного излучения с длинами волн 8-12 микрон. Это так называемое равновесное свечение человеческого тела, максимум длины излучения которого полностью определяется температурой и для 37°С соответствует приблизительно 10 микронам. Существует целый ряд физических принципов и соответствующих устройств, которые применяются для регистрации излучения в указанном спектральном диапазоне. Для пассивных инфракрасных извещателей следует использовать чувствительный элемент с оптимальным соотношением чувствительность/стоимость. Таким чувствительным элементом является пироэлектрический фотоэлемент.


Рис. 1. Спектральная зависимость интенсивности свечения: солнца, флюоресцентной лампы, лампы накаливания, человеческого тела и спектра пропускания ряда блокирующих видимый свет фильтров: кремниевый фильтр, просветленный кремниевый фильтр, фильтр с длиной волны среза 5 мкм и фильтр с длиной волны среза 7 мкм.

Явление пироэлектричества состоит в возникновении наведенной разности потенциалов на противоположных сторонах пироэлектрического кристалла при его неравновесном кратковременном нагревании. Со временем электрические заряды из внешних электрических цепей и перераспределение зарядов внутри кристалла приводят к релаксации наведенного потенциала. Из вышесказанного следует:

частота прерывания (Гц).



Рис. 2. Зависимость величины сигнала отклика пироэлемента от частоты прерывания регистрируемого теплового ИК-сигнала.

1. Для эффективной пироэлектрической регистрации теплового излучения необходимо применять прерыватель с оптимальной частотой прерывания излучения около 0,1 Гц (рис. 2). С другой стороны это означает, что если используется безлинзовая конструкция пироэлектрического элемента, он сможет зарегистрировать человека лишь при его входе в пределы диаграммы направленности (рис. 3, 4) и при выходе из нее со скоростью 1 - 10 сантиметров в секунду.



Рис. 3, 4. Форма диаграммы направленности спаренного корпусированного пироэлектрического элемента в горизонтальной (Рис. 3.) и вертикальной (Рис. 4.) плоскостях.

2. Для повышения чувствительности пироэлектрического элемента к величине перепада температур (разница между фоновой температурой и температурой тела человека) необходимо сконструировать его, выдержав минимально возможные размеры, с целью уменьшения количества тепла, необходимого для заданного повышения температуры чувствительного элемента. Размеры чувствительного элемента нельзя чрезмерно уменьшать, так как это приведет к ускорению релаксационных характеристик, что эквивалентно уменьшению чувствительности. Существует оптимальный размер. Минимальная чувствительность обычно находится на уровне 0,1°С для пироэлемента размером 1 х 2 мм и толщиной несколько микрон.

3. Для повышения термостабильности работы извещателя и отсечки влияния медленно меняющейся температуры окружающей среды чувствительный элемент изготавливается в виде парной конструкции электрически встречно включенных элементов, расположенных на общей подложке. Внешний вид чувствительного пироэлемента приведен на рис. 5. Как видно из рисунка, чувствительный элемент изготавливается в типовом корпусе обычного полупроводникового электронного элемента. В корпусе формируется окно из материала, не пропускающего извне излучения с длиной волны менее 1 - 7 микрон в зависимости от типа используемого фильтрующего материала (см. рис. 1). Мировым лидером по производству пироэлектрических элементов является фирма HAMAMATSU (Япония). В Украине пироэлементы производит СКТБ Института физики НАН Украины.


Рис. 5. Внешний вид чувствительного элемента пироэлектрического пассивного ИК-извещателя.

Можно четко сформулировать условия обнаружения человека с помощью инфракрасного извещателя. Инфракрасный извещатель предназначен для обнаружения движущихся объектов с температурой, отличной от фонового значения. Диапазон регистрируемых скоростей перемещения: 0,1 - 1,5 м/сек. Таким образом инфракрасный извещатель не регистрирует неподвижные объекты, даже если их температура превышает уровень фона (неподвижный человек) или если объект с температурой, отличной от фона, перемещается таким образом, что не пересекает чувствительных зон извещателя (например перемещается вдоль чувствительной зоны).

Естественно, что высокая чувствительность инфракрасного извещателя достигается путем применения линзовой системы концентрации входящего излучения (рис. 6). В инфракрасном извещателе линзовая система выполняет две функции.



Рис. 6. Варианты формирования диаграммы направленности ИК-извещателей в зависимости от типа линзовой системы.

Во-первых, линзовая система служит для фокусировки излучения на пироэлектрическом элементе.

Во-вторых, она предназначена для пространственного структурирования чувствительности извещателя. При этом формируются пространственные зоны чувствительности, которые как правило имеют форму «лепестков», а их количество достигает нескольких десятков. Объект обнаруживается при каждом входе и выходе из чувствительных зон.

Обычно различают следующие виды диаграммы чувствительности, которую называют также диаграммой направленности.

1). Стандартная - веерная по азимуту и многоярусная по углу места (рис. 6а).

2). Узконаправленная - одно- или двухлучевая дальнодействующая по азимуту и многоярусная по углу места (рис. 6б).

3). Штороподобная - узконаправленная по азимуту и веероподобная по углу места (рис. 6в).

Существует также круговая диаграмма направленности (в частности, для извещателей, устанавливаемых на потолке помещения), а также ряд других.

Рассмотрим варианты конструктивного исполнения системы формирования диаграммы направленности (рис. 7). Эта оптическая система может быть либо линзовой, либо зеркальной. Изготовление обычной линзовой системы с учетом требования формирования пространственно структурированной диаграммы направленности является дорогостоящей задачей, поэтому обычные линзы в пассивных инфракрасных датчиках не применяются. Применяются так называемые линзы Френеля. В обычной линзе для направленного отклонения света (фокусировки) используется специальная сферическая форма поверхности, материал линзы имеет коэффициент оптического преломления, отличный от коэффициента преломления окружающей среды. В линзе Френеля используется явление дифракции, которое проявляется в частности в отклонении светового луча при прохождении через узкую щель. Линза Френеля изготавливается методом штамповки и поэтому стоит дешево. Недостатком применения линзы Френеля является неизбежная потеря половины энергии излучения в результате его дифракционного отклонения линзой в направлении, отличном от направления на пироэлектрический элемент.


Рис. 7. Конструктивные варианты исполнения охранных пассивных ИК-извещателей: с линзой Френеля и с зеркальной фокусирующей системой.

Зеркальная линза более эффективна по сравнению с линзой Френеля. Она изготавливается из пластической массы методом штамповки с последующим покрытием структурированной поверхности светоотражающим покрытием, не изменяющим своих свойств со временем (до 10 лет). Наилучшим покрытием является золото. Отсюда и более высокая, приблизительно в два раза, стоимость пассивных инфракрасных извещателей с зеркальной системой по сравнению с линзовой. Кроме того извещатели с зеркальной системой имеют большие габариты по сравнению с извещателями, оснащенными линзами Френеля.

Зачем применяют более дорогие извещатели с зеркальной системой концентрации входящего излучения? Важнейшей характеристикой извещателя является его чувствительность. Чувствительность практически одинакова в перерасчете на единицу площади входного окна извещателя. Это, в частности, означает, что если проектируют пассивный инфракрасный извещатель с повышенной чувствительностью, то вынуждены увеличивать размер зоны концентрации излучения - площадь входного окна, а, значит, и сам извещатель (максимальная чувствительность современных пассивных ИК-извещателей позволяет производить обнаружение человека на расстоянии до 100 метров). Если положить наличие потерь полезного сигнала за счет несовершенства линзы, то необходимо повысить коэффициент усиления электронной схемы обработки электрического сигнала, формируемого чувствительным элементом. При условии одинаковой чувствительности коэффициент усиления электрической схемы в зеркальном извещателе в два раза меньше, чем в извещателе с линзой Френеля. Это обозначает, что в извещателях с линзой Френеля выше вероятность ложного срабатывания, вызванная помехами в электронной схеме.

Еще раз вернемся к оптической схеме извещателя. Кроме линзовой системы и оптического «отрезающего» фильтра, установленного непосредственно в корпусе чувствительного элемента, для уменьшения ложных срабатываний, вызванных всевозможными источниками излучения, применяют различные оптические фильтрующие элементы («белый» фильтр, «черное» зеркало и т.п.), задача которых минимизировать попадание постороннего оптического излучения на поверхность пиро-электрического элемента.

Входное окно большинства ИК-извещателей выполнено в виде «белого» фильтра. Этот фильтр изготовлен из материала, рассеивающего видимый свет, но в то же время не влияющего на распространение инфракрасного излучения.

В извещателях с зеркальной системой концентрации входящего излучения дополнительный поглощающий фильтр размещается непосредственно на зеркале. Такое зеркало отлично отражает ИК-излучение и эффективно поглощает видимую часть спектра. Внешне оно имеет черный цвет, поскольку не отражает видимый свет, и поэтому называется «черным» зеркалом. Использование дополнительного, по отношению к непосредственно размещаемому на корпусе светочувствительного элемента, поглощающего фильтра позволяет уменьшить тепловую нагрузку на чувствительный элемент от поглощенной энергии падающего на него излучения, поскольку дополнительный поглощающий фильтр и чувствительный пироэлемент пространственно разнесены.

Совершенствуются и линзы Френеля. Прежде всего путем придания линзе сферической формы, минимизирующей аберрации по сравнению со стандартной цилиндрической формой. Кроме этого применяется дополнительное структурирование диаграммы направленности в вертикальной плоскости за счет мультифокусной геометрии линзы: в вертикальном направлении линза разделена на три сектора, каждый из которых независимо собирает излучение на один и тот же чувствительный элемент.

Весьма актуальной является проблема противодействия физическому экранированию извещателя, которое сводится к установке перед ним экрана, перекрывающего его «поле зрения» (так называемое «маскирование»). Технические средства противодействия маскированию составляют систему антимаскирования извещателя. Некоторые извещатели оснащаются встроенными ИК- светодиодами. В случае, если в зоне обнаружения извещателя, а следовательно в зоне действия светодиодов, возникает преграда, то отражение излучения светодиодов от преграды воспринимается извещателем как сигнал тревоги. Более того, периодически (в существующих моделях - один раз в 5 часов) происходит самотестирование извещателя на предмет наличия отраженного излучения ИК-светодиодов. В том случае, если при самотестировании на выходе электрической схемы не появится необходимый сигнал, то срабатывает схема генерации сигнала тревоги. Извещатели с функциями антимаскирования и самотестирования устанавливаются на наиболее ответственных объектах, в частности там, где возможно противодействие работе системы охраны.

Еще один путь повышения помехоустойчивости извещателя - это применение квадратичного чувствительного пироэлемента совместно с использованием микропроцессорной обработки сигнала. Разные фирмы решают проблему создания квадратичного элемента различным образом. Например фирма «OPTEX» применяет два обычных сдвоенных пироэлемента, расположенных рядом. Основная задача системы - выделить и «отсеять» события, вызванные одновременной засветкой обоих пироэлементов (например свет фар) или электрической помехой.

Фирма «ADEMCO» применяет специальную конструкцию счетверенного пироприемника, где четыре чувствительных элемента расположены в одном корпусе. При этом встречно включены пироэлементы, расположенные как в горизонтальной плоскости, так и в вертикальной. Такой извещатель не будет реагировать на мелких животных (мыши, крысы), которые зачастую бывают в складских помещениях и являются одной из причин ложных срабатываний (рис. 8). Использование разнополярного подключения чувствительных элементов в таком извещателе делает невозможным «шумовое» ложное срабатывавние.



Рис. 8. Работа многоканальной системы селекции шумовых импульсов на примере работы квадратичного охранного пассивного ИК-извещателя.

Фирма «ADEMCO» настолько уверена в совершенстве разработанного ею квадратичного извещателя, что объявила о выплате премии, если обладатель извещателя зафиксирует его ложное срабатывание.

Еще одной мерой предосторожности является применение проводящих пленочных покрытий, наносимых на внутреннюю поверхность входного окна для противодействия радиочастотным помехам.

Эффективным методом повышения помехоустойчивости извещателей является применение так называемой «двойной технологии», которая заключается в использовании комбинированного извещателя, реализующего пассивный инфракрасный и активный радиоволновой (иногда - ультразвуковой) принципы действия.

Радиоволновой (ультразвуковой) блок фиксирует наличие допплеровского сдвига в частотном спектре отраженного радиосигнала (ультразвука), обусловленного движением объекта. Применение таких извещателей наиболее эффективно при последующей микропроцессорной обработке поступающих сигналов. Эти извещатели не рекомендуется применять в помещениях, где находятся люди, так как излучение оказывает вредное влияние на здоровье.

Извещатели «двойной технологии» используются при охране помещений, в которых имеются небольшие домашние животные: кошки, собаки, - а также при наличии в охраняемом помещении периодически включаемых неподвижных теплоизлучающих устройств: факсимильный аппарат, калорифер, вентилятор и т.п.

Мы рассмотрели основы работы и конструкцию пассивных инфракрасных охранных извещателей. В целом все конструктивные ухищрения, применяемые теми или иными фирмами, имеют одну цель - уменьшить вероятность ложного срабатывания извещателя, поскольку ложное срабатывание ведет к неоправданным затратам на реагирование по тревоге, а также влечет моральный ущерб для владельца охраняемого имущества.

Извещатели постоянно совершенствуются. На современном этапе основными направлениями совершенствования извещателей является повышение их чувствительности, уменьшение числа ложных срабатываний, дифференциация подвижных объектов по признаку санкционированного или несанкци-онированного пребывания в зоне обнаружения.

Как источник электрического сигнала, каждый чувствительный пироэлемент является также источником случайных шумовых сигналов. Поэтому актуальной является задача минимизации флуктуационных помех, решаемая схемотехническим путем. Используются разные методы борьбы с шумами.

Во-первых, в извещателе устанавливаются электронные дискриминаторы входного сигнала по верхнему и нижнему уровню, что минимизирует частоту появления помехи (рис. 9).



Рис. 9. Пороговая система двухстороннего ограничения уровня шумового сигнала охранного пассивного ИК-извещателя.

Во-вторых, применяется режим синхронного учета импульсов, поступающих по обоим оптическим каналам. Причем схема составляется таким образом, что полезный оптический сигнал на входе приводит к появлению положительного электрического импульса по одному каналу и отрицательного по другому. На выходе применяется схема вычитания. Если источником сигнала является шумовой электрический сигнал - он будет идентичен для двух каналов и на выходе результирующий сигнал будет отсутствовать. Если источником сигнала является оптический сигнал, то выходной сигнал будет суммироваться.

В третьих, применяется метод счета импульсов. Сущность этого метода состоит в том, что одиночный сигнал регистрации объекта не приводит к формированию сигнала тревоги, а устанавливает извещатель в так называемое «предтревожное состояние». Если в течении определенного времени (на практике это - 20 секунд) повторно не поступит сигнал регистрации объекта, происходит сброс предтревожного состояния извещателя (рис. 10).



Рис. 10. Работа системы счетчика импульсов.

Как правило все извещатели требуют подключения электрического питания 12 В постоянного тока. Ток потребления типового извещателя находится в пределах 15 - 40 мА. Сигнал тревоги формируется и передается на охранную централь посредством выходного реле с нормально замкнутыми контактами.

Промышленностью выпускаются извещатели для установки в помещении, а также на открытых площадках; последние имеют соответствующее климатическое исполнение. Типовой срок службы пассивных инфракрасных извещателей - 5 - 6 лет.